RADIODINÂMICA .
FENÔMENOS QUE SE ESTRUTURAM E FORMAS NOVS PARTÍCULAS E ENERGIAS POR PROCESSOS DE RADIOATIVIDADE.
E COM VARIAÇÕES CONFORME O TEMPO DE AÇÃO, ESPAÇO, ALTAS VELCODIADES E TEMPERATURA E O SDCITE GRACELI.
X
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS] fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS]fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
Em física quântica, a Teoria de Regge é o estudo das propriedades analíticas de dispersão como função de momento angular. Por exemplo spin electrónico (elétrons) podem apresentar movimento de rotação em dois sentidos diferentes, por isso é que dois elétrons podem ocupar o mesmo nível ao mesmo tempo, ou 4 ou 8… . Elétrons e Quarks todos possuem Spin de 1/2 e Grávitons Spin 2[1]. Aplicando a matemática Função Beta foi possível explicar a presença dessas linhas retas, como sendo filamentos[2]. Assim nasceu a primeira teoria da corda chamada Primeira-quantificação da corda que se dividiram em cordas abertas e cordas fechadas. Cordas abertas têm menos modos de vibração que cordas fechadas, pois possuem as pontas livres, na corda fechada para manter as pontas fixas é necessário mais modos de vibração[3]. Esta teoria não-relativística foi desenvolvido por Tullio Regge, em 1957.
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Em física quântica, a Teoria de Regge é o estudo das propriedades analíticas de dispersão como função de momento angular. Por exemplo spin electrónico (elétrons) podem apresentar movimento de rotação em dois sentidos diferentes, por isso é que dois elétrons podem ocupar o mesmo nível ao mesmo tempo, ou 4 ou 8… . Elétrons e Quarks todos possuem Spin de 1/2 e Grávitons Spin 2[1]. Aplicando a matemática Função Beta foi possível explicar a presença dessas linhas retas, como sendo filamentos[2]. Assim nasceu a primeira teoria da corda chamada Primeira-quantificação da corda que se dividiram em cordas abertas e cordas fechadas. Cordas abertas têm menos modos de vibração que cordas fechadas, pois possuem as pontas livres, na corda fechada para manter as pontas fixas é necessário mais modos de vibração[3]. Esta teoria não-relativística foi desenvolvido por Tullio Regge, em 1957.
Pólos de Regge
O exemplo mais simples dos pólos de Regge é fornecido pela abordagem mecânica quântica do potencial de Coulomb ou, diferentemente, pelo tratamento mecânico quântico da ligação ou dispersão de um elétron de massa e carga elétrica de um próton de massa e carga . A energia da ligação do elétron ao próton é negativa, enquanto que, para a dispersão, a energia é positiva. A fórmula para a energia de ligação é a expressão:
- X
O exemplo mais simples dos pólos de Regge é fornecido pela abordagem mecânica quântica do potencial de Coulomb ou, diferentemente, pelo tratamento mecânico quântico da ligação ou dispersão de um elétron de massa e carga elétrica de um próton de massa e carga . A energia da ligação do elétron ao próton é negativa, enquanto que, para a dispersão, a energia é positiva. A fórmula para a energia de ligação é a expressão:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Considerada como uma função complexa de , essa expressão descreve no plano- complexo um caminho que é chamado de "trajetória de Regge". Assim, nesta consideração, o momento orbital pode assumir valores complexos.
As trajetórias de Regge podem ser obtidas para muitos outros potenciais, em particular também para o potencial de Yukawa[4].
As trajetórias de Regge aparecem como pólos da amplitude de dispersão[5] ou na matriz-S relacionada. No caso do potencial de Coulomb considerado acima, esta matriz-S é dada pela seguinte expressão:
- X
Considerada como uma função complexa de , essa expressão descreve no plano- complexo um caminho que é chamado de "trajetória de Regge". Assim, nesta consideração, o momento orbital pode assumir valores complexos.
As trajetórias de Regge podem ser obtidas para muitos outros potenciais, em particular também para o potencial de Yukawa[4].
As trajetórias de Regge aparecem como pólos da amplitude de dispersão[5] ou na matriz-S relacionada. No caso do potencial de Coulomb considerado acima, esta matriz-S é dada pela seguinte expressão:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a função gama, uma generalização de fatorial .
Esta função gama é uma função meromorfa do seu argumento com pólos simples em . Assim, a expressão para (a função gama no numerador) possui pólos precisamente nesses pontos, que são dadas pela expressão acima para as trajetórias de Regge; por isso o nome pólos de Regge.
onde é a função gama, uma generalização de fatorial .
Esta função gama é uma função meromorfa do seu argumento com pólos simples em . Assim, a expressão para (a função gama no numerador) possui pólos precisamente nesses pontos, que são dadas pela expressão acima para as trajetórias de Regge; por isso o nome pólos de Regge.
Comentários
Postar um comentário